Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2112.05320v2

ABSTRACT

Intervention policies against COVID-19 have caused large-scale disruptions globally, and led to a series of pattern changes in the power system operation. Analyzing these pandemic-induced patterns is imperative to identify the potential risks and impacts of this extreme event. With this purpose, we developed an open-access data hub (COVID-EMDA+), an open-source toolbox (CoVEMDA), and a few evaluation methods to explore what the U.S. power systems are experiencing during COVID-19. These resources could be broadly used for research, public policy, and educational purposes. Technically, our data hub harmonizes a variety of raw data such as generation mix, demand profiles, electricity price, weather observations, mobility, confirmed cases and deaths. Typical methods are reformulated and standardized in our toolbox, including baseline estimation, regression analysis, and scientific visualization. Here the fluctuation index and probabilistic baseline are proposed for the first time to consider data fluctuation and estimation uncertainty. Based on these, we conduct three empirical studies on the U.S. power systems, and share new solutions and unexpected findings to address the issues of public concerns. This conveys a more complete picture of the pandemic's impacts, and also opens up several attractive topics for future work. Python, Matlab source codes, and user manuals are all publicly shared on a Github repository.


Subject(s)
COVID-19
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2005.06631v7

ABSTRACT

The novel coronavirus disease (COVID-19) has rapidly spread around the globe in 2020, with the U.S. becoming the epicenter of COVID-19 cases since late March. As the U.S. begins to gradually resume economic activity, it is imperative for policymakers and power system operators to take a scientific approach to understanding and predicting the impact on the electricity sector. Here, we release a first-of-its-kind cross-domain open-access data hub, integrating data from across all existing U.S. wholesale electricity markets with COVID-19 case, weather, cellular location, and satellite imaging data. Leveraging cross-domain insights from public health and mobility data, we uncover a significant reduction in electricity consumption across that is strongly correlated with the rise in the number of COVID-19 cases, degree of social distancing, and level of commercial activity.


Subject(s)
COVID-19 , Coronavirus Infections
4.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2004.13614v3

ABSTRACT

The considerable cessation of human activities during the COVID-19 pandemic has affected global energy use and CO2 emissions. Here we show the unprecedented decrease in global fossil CO2 emissions from January to April 2020 was of 7.8% (938 Mt CO2 with a +6.8% of 2-{\sigma} uncertainty) when compared with the period last year. In addition other emerging estimates of COVID impacts based on monthly energy supply or estimated parameters, this study contributes to another step that constructed the near-real-time daily CO2 emission inventories based on activity from power generation (for 29 countries), industry (for 73 countries), road transportation (for 406 cities), aviation and maritime transportation and commercial and residential sectors emissions (for 206 countries). The estimates distinguished the decline of CO2 due to COVID-19 from the daily, weekly and seasonal variations as well as the holiday events. The COVID-related decreases in CO2 emissions in road transportation (340.4 Mt CO2, -15.5%), power (292.5 Mt CO2, -6.4% compared to 2019), industry (136.2 Mt CO2, -4.4%), aviation (92.8 Mt CO2, -28.9%), residential (43.4 Mt CO2, -2.7%), and international shipping (35.9Mt CO2, -15%). Regionally, decreases in China were the largest and earliest (234.5 Mt CO2,-6.9%), followed by Europe (EU-27 & UK) (138.3 Mt CO2, -12.0%) and the U.S. (162.4 Mt CO2, -9.5%). The declines of CO2 are consistent with regional nitrogen oxides concentrations observed by satellites and ground-based networks, but the calculated signal of emissions decreases (about 1Gt CO2) will have little impacts (less than 0.13ppm by April 30, 2020) on the overserved global CO2 concertation. However, with observed fast CO2 recovery in China and partial re-opening globally, our findings suggest the longer-term effects on CO2 emissions are unknown and should be carefully monitored using multiple measures.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL